INTRODUCTION

Trochanteric fracture of femur is one of the commonest fractures in elderly people\(^1\). This fracture carries risks associated with prolonged immobility. Early mobilization of the patients reduces the complications\(^1\). Early mobilization is only possible when stable fixation is achieved with less post-operative pain and when patients become haemodynamically stable. There are various methods of stable fixation such as sliding hip screw, intramedullary nail, trochanteric locking plate, fixed angle blade plate and dynamic condylar plate\(^1\). Dynamic hip screw fixation remains one of the common methods of treatment in stable intertrochanteric fractures\(^4\). Minimal invasive surgeries result in reduction of postoperative pain and help in early mobilization of the patients. Minimal invasive dynamic hip screw (MIDHS)
Minimally Invasive Dynamic Hip Screw fixation has advantages of less blood loss, minimal soft tissue dissection, lesser requirement of post-operative analgesics and shorter hospital stay\(^6\). Hence this study was conducted to evaluate the outcome of MIDHS.

METHODS

This is a prospective study including 25 patients operated with MIDHS technique between May 2011 and July 2013 at Kathmandu Medical College Teaching Hospital with at least six months of follow up. All closed stable intertrochanteric fractures with AO (Arbeitsgemeinschaft für Osteosynthesefragen) type A1.1 to A2.1 were included in the study. Patients with polytrauma, pathological fracture, unstable intertrochanteric fracture with AO type A2.2 to A3.3, compound fracture and failed closed reduction on fracture table were excluded from the study.

All operations were performed under spinal anaesthesia on fracture table. Fractures were reduced by closed manipulation and checked under image intensifier. A guide wire mounted in 135-degree guide plate was placed over anterior aspect of hip and checked in image intensifier in AP view (Figure 1). Plate was made aligned with the lateral border of femur and guide wire was aligned in lower half of femoral neck and head (Figure 2). Hence entry point of guide wire was marked in lateral aspect of thigh. About five cm of skin incision was made. Fascia lata and Vastus lateralis were incised by diathermy to minimize blood loss (Figure 3). Guide wire was inserted from lateral border of femur below 2.5 cm from trochanteric flair with the help of 135-degree angle guide. Correct placement of guide-wire was checked with image intensifier in AP and lateral views. Reaming was done with desired length. Hip screw was then inserted. Guide-wire was removed. Four-hole barrel plate was inserted through the wound in such a way that barrel faces laterally (Figure 4). After inserting the plate it was turned 180-degree and introduced over hip screw (Figure 5). In obese patients difficulties in inserting the barrel on hip screw were made easy with reintroducing guide-wire through the barrel plate. Plate was then fixed with femur shaft with four cortical screws. Compression screw was inserted. Fascia and subcutaneous tissues were sutured with absorbable suture and skin was closed with staples. No drain was inserted.

Intraoperative blood loss was measured with weighing of blood soaked gauze pieces. Specific gravity of red corpuscles is 1.0293 and of plasma 1.0270. Hence one ml of blood weighs one gm\(^9\).

Postoperative AP and lateral radiographs were obtained in the next day of surgery. Postoperative analgesic protocol was maintained. For the first 24 hours all the patients received injection Diclofenac 75 mg intramuscular (deep gluteal) eight hourly. From 24 hours onward tablet Diclofenac 50 mg was prescribed on requirement basis. Amount of analgesic consumption was noted.

Postoperative haemoglobin was measured after 24 hours of surgery and its value was compared with preoperative haemoglobin. The difference was noted.

Toe touch ambulation in walker was started from the first postoperative day. Patients were discharged from hospital once they were well ambulated. Sutures were removed in two weeks. Partial weight bearing ambulation was started in three weeks and full weight bearing ambulation was started in an average of three months. AP and lateral radiographs were obtained in three weeks, six weeks, three months and six months follow up. Duration for achieving radiological union was noted. Complications were recorded.

![Figure 1: Incision site](image-url)
Figure 2: C-arm image to find out entry point

Figure 3: Guide wire entry point

Figure 4: Insertion of barrel plate

Figure 5: Insertion of barrel plate over hip screw

Figure 6: Preoperative X-ray of Pelvis AP view

Figure 7: Postoperative X-ray Pelvis AP view
RESULTS

Twenty-five patients with stable intertrochanteric fracture were followed up for at least six months. There were 15 male patients and 10 female. Average age of the patients was 73 years ranging from 60 years to 86 years. 14 fractures were in right side and 11 in left. Mean operating time was 50 minutes ranging from 40 to 60 minutes. Mean wound size was of five cm.

Mean peroperative blood loss was 53 ml (range: 43 – 85 ml). Mean reduction of postoperative haemoglobin was 0.9 gm/dl ranging from 0.3 to 1.1 gm/dl. Mean requirement of analgesics in a day was two times (one to three times). Mean operating time was 50 min (40 – 60 min). Mean wound size was of five cm. Mean hospital stay after surgery was five days (four to six days). All fractures united within three months. There were no surgery related complications.

DISCUSSION

Use of dynamic hip screw and plate remains one of the common methods for the treatment of intertrochanteric fracture of femur. This method provides rigid fixation and facilitates early mobilization of patients6,10.

There are several studies with good results using minimal invasive dynamic hip screw (MIDHS) for the treatment of stable intertrochanteric fracture of femur.

In MIDHS it has been found to have less peroperative blood loss than with conventional DHS (CDHS). It is thought to be due to less soft tissue dissection, less fracture exposure and incision being in the safer vascular zone6,10,11. In our study amount of peroperative blood loss was 53 ml (43 – 85 ml). In the study of Di Paola et al12 it was 41 ml. Little et al13 found 160 ml of peroperative blood loss in conventional DHS. Hou et al14 and Chua et al15 had an average of 283 ml and 409 ml of peroperative blood loss respectively with conventional DHS (CDHS). Reduction of postoperative haemoglobin was less in MIDHS than in conventional DHS in comparative studies of Wong et al6, Ho et al8 and Wang et al11 (Table 1). Less blood loss reduces the requirement of its transfusion and minimizes cardiovascular complications.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Hb reduction (g/dl)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIDHS</td>
</tr>
<tr>
<td>Wong et al. (2009)</td>
<td>66</td>
<td>1.4</td>
</tr>
<tr>
<td>Ho et al. (2009)</td>
<td>88</td>
<td>1.18</td>
</tr>
<tr>
<td>Wang et al. (2010)</td>
<td>97</td>
<td>1.3</td>
</tr>
<tr>
<td>Our</td>
<td>25</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Table 1: Comparison of reduction of post-operative haemoglobin in various studies.

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>Wound size (cm)</th>
<th>Barrel plate used</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIDHS</td>
<td>CDHS</td>
</tr>
<tr>
<td>Wong et al. (2009)</td>
<td>66</td>
<td>2.5</td>
<td>4 hole</td>
</tr>
<tr>
<td>Ho et al. (2009)</td>
<td>88</td>
<td>5</td>
<td>15 4 hole</td>
</tr>
<tr>
<td>Alobaid et al. (2004)</td>
<td>48</td>
<td>3</td>
<td>2 hole</td>
</tr>
<tr>
<td>Walia et al. (2010)</td>
<td>25</td>
<td>3</td>
<td>2 hole</td>
</tr>
<tr>
<td>Our</td>
<td>25</td>
<td>5</td>
<td>4 hole</td>
</tr>
</tbody>
</table>

Table 2: Comparison of wound size in various studies.

Size of the wound has direct relation with post-operative pain and wound contamination. In our series we had wound size of an average five cm which is comparable with the wound size of Ho et al8. Wong et al8 and Alobaid et al7 had wound size of 2.5 cm and Walia et al had of three cm. In the study of Ho et al the wound size in conventional DHS was of 15 cm. To minimize wound size Alobaid et al and Walia et al16 used two hole DHS and concluded that two hole DHS plate using minimally invasive technique gives as good results as a regular DHS done with a longer incision and plate in stable intertrochanteric fractures17. In our study we used four hole DHS (Table 2).

In our study patients received 75 mg of intramuscular injection of Diclofenac eight hourly in postoperative period for 24 hours and then afterward tablet Diclofenac 50 mg in oral form as per required with maximum of three times a day. Average requirement of tablet Diclofenac in postoperative period was 10 tablets. Average total days of analgesic required were five days. Wong et al8 in their study found that the amount of postoperative analgesic required were 8.6 mg of pethidine and 5.4 tablets in MIDHS whereas 48.4 mg of pethidine and 8.6 tablets in conventional DHS. They concluded the requirement of postoperative analgesics were significantly less in
MIDHS than CDHS. Similarly in their study Alobaid et al. patients need 15.1 mg of Morphine, 169 g of Codeine and 1.9 g of Acetaminophen as postoperative analgesics in MIDHS group whereas 25.2 mg of Morphine, 209 g of Codeine and 5.4 g of Acetaminophen in CDHS group.

Lee et al. found that the length of hospital stay after surgery was 5.4 days in MIDHS group and 8.8 days in CDHS group. Wang et al. had 5.7 days of postoperative length of hospital stay in MIDHS and 7.9 days in CDHS groups. In the study of Hoet et al. he found that the average length of hospital stay of patients in MIDHS group was 12.1 days and in CDHS group was 23.3 days. In our study average length of postoperative hospital stay was Five days which is similar with the studies of Lee et al. and Wang et al. Less postoperative pain, ability to ambulate patient early and less complication lessen length of hospital stay reducing burden to caregivers and reduces the treatment cost significantly.

CONCLUSION

Minimal invasive dynamic hip screw fixation technique is effective and safe method in treating stable intertrochanteric fractures and it reduces intraoperative blood loss, postoperative analgesic use and length of hospital stay.

REFERENCES